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ABSTRACT 
 
 
 
The United States Navy is committed to implementing and using unmanned 

vehicles (UVs). Battlegroups have deployed and will continue to deploy with UVs 

because of their potential effectiveness. However, current UV doctrine does not set forth 

a standardized set of techniques and procedures for UV information exchange during 

maritime missions. The focus of this study is to analyze the structure of information flow 

for unmanned systems and suggest an exchange architecture to successfully inform and 

build decision maker understanding based on data from UVs in support of these missions. 

Through analysis of the knowledge-information-data (KID) model, and definition of 

high-level functions and tasks created from fleet input, this thesis develops an IDEF0 and 

PERT representation. It outlines tasks and roles for successfully accomplishing 

information exchange from UV payload sensors to tactical decision makers. The study 

concludes with suggested measures of effectiveness and performance to determine the 

strength and validity of the architecture. 
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I. INTEGRATING UNMANNED VEHICLES INTO MARITIME 
MISSIONS 

A. INTRODUCTION 
The United States Navy is committed to implementing and using unmanned 

vehicles (UVs). The Navy sees UVs as “integral components of future tactical 

formations” (OSD 2002). Reasons for the transformation from manned craft to unmanned 

platforms include technological improvements, potential cost reductions, and manpower 

risk mitigation. With the current reduction in force structure and personnel, there is a 

necessity to pursue alternative solutions for accomplishing missions effectively (OSD 

2002). 

The greatest factor in increasing UV use is that technology enables their advanced 

levels of performance and capability. Unmanned technology “offers profound 

opportunities to transform the manner in which this country conducts a wide array of 

military and military support operations” (OSD 2002). It is no longer a question of when 

UVs will be a part of the mission, but how well they integrate in order to ensure 

successful Navy and joint missions (OSD 2002).  

Some UVs provide real-time or near real-time high-resolution imagery which has 

improved battlespace responsiveness, enabling adaptive decision-making (Cordesman 

2003). Battlegroups deploy with UVs because of their potential effectiveness. According 

to the CNO, there is no reason for this to change in the near future. In his 2004 Guidance, 

the CNO states, “if we are to extend our current advantage, we must capitalize on 

revolutions in information, stealth, and precision technologies and develop new warfare 

concepts that will lead us not just towards jointness, but true interdependence.”  

Relative to using helicopters and other manned aircraft, UVs have prospects for 

being cost and mission effective in many traditional mission areas (OSD 2002). The 

tactical unmanned surface vehicle (USV) is near the top of the Navy’s spending 

priorities, ahead of some prominent shipbuilding programs such as DD(X) and LPD 17 
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(Brown 2003). There are expectations throughout the Navy’s senior leadership that 

unmanned platforms will dominate many war fighting roles.  

B.  INTEGRATION FOR MARITIME USE 
UVs will free manned aircraft to execute other missions, and will conduct 

reconnaissance previously inaccessible or impractical for manned platforms. UVs are 

preferred in high-threat or heavily defended areas where high-cost, manned system 

survivability is at risk. For example, UAVs can provide visual identification of surface 

vessels during maritime interdiction operations (MIO) in potentially hostile scenarios. 

With future conflicts taking place in littoral regions, against adversaries who possess 

increasingly asymmetric weapon systems, UVs provide more options for readiness in 

combating over-the-horizon threats (Gansler 1998).  

UVs proved effective for overland surveillance, reconnaissance, and targeting 

mission during recent conflicts. UAVs provided near real-time surveillance of the 

battlefields in Kosovo, Afghanistan, and Iraq. In Yemen, an armed UAV destroyed a 

carload of suspected terrorists (Thompson 2004). Overland UV missions have matured in 

their support of the ground commander for battlespace success.  

However, current UV doctrine does not set forth a standardized set of techniques 

and procedures for UV information exchange during maritime missions. These missions 

range from building and maintaining a Recognized Maritime Picture (RMP), to Force 

Protection and Maritime Interdiction Operations (MIO). These missions rely heavily on 

gathered intelligence and information. Tactical commanders, as well as high-level 

operational commanders who oversee the units, demand timely, complete, and accurate 

information. The focus of this study is to analyze the structure of information flow for 

unmanned systems and suggest an exchange architecture to successfully inform and build 

decision maker understanding based on data from UVs in support of these missions.  

Maritime missions have been accomplished in the past using legacy systems such 

as helicopters, shipboard sensors, radar, space-based systems, and manned station 

lookouts. Over time, tactics, techniques, and procedures provided structure for integrating 

these systems into a ship’s Combat Information Center (CIC) operations. Current 

doctrine for these assets supports information exchange with the manned sensor and the 
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unit or high-level commanders. This exchange features collaboration among humans to 

resolve data for evaluation and dissemination. The key for success in integrating UVs is 

to do the same; provide information flow to facilitate action by decision makers.  

C.  INFORMATION EXCHANGE 
Distributed sensors from UVs transmit data across several networks in order to 

reach decision makers. Tactical information exchange requires timely interpretation, 

analysis, and reporting. The distributed unmanned sensors provide data to the operator 

randomly. As the first human contact with the data, the operator ensures that the data 

received can support actionable information.  

A typical information exchange model features sensors, communications, 

operators, and decision makers. A description of the perceived transmission of data from 

an unmanned asset in a shipboard setting is below and displayed in Figure 1:  

 

• The deployed UV, equipped with sensors, sends electrical signals on a 
contact of interest (COI) to a shipboard operator through a network.  

• The mission payload operator in the ship receives the signals via interface 
and interprets the data. The operator then fills database entries about the 
contact (course, speed, heading, etc.).  

• The local unit-level commander fields database entries, through 
intelligence evaluation, and sends a report to high-level commanders. The 
database entries then undergo analysis to develop a RMP. 

• A communication link is available for the high-level commander to 
provide feedback to notify the local unit if more data is required and to 
advise a course of action. 
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Figure 1.   Perceived Data Transmission Using Distributed Sensors 

 
Figure 1 suggests the flow does not occur on its own. In general, a consideration 

of the procedures underlying integration of distributed sensor data into the RMP requires 

further review. Critical to this issue is how information propagates through the system 

from remote distributed sensor, to operator, to high-level commanders (Gottfried & 

Woolsey 2004). This thesis decomposes the interfaces, integration, and interpretation of 

UV data for maritime tactical decision-making.  

The raw data itself cannot facilitate action. Processing transforms the data into 

information. In addition, the acquired information undergoes analysis for action or 

decision. The problem lies in understanding where data becomes information and where 

information becomes operational knowledge for high-level commander use. The study 

addresses this issue in order to facilitate UV use for maritime missions.  
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D.  DEFINING PROCESS AND PROCEDURE 
In the last 25 years, the military has focused more on technological improvement 

than process and organizational improvement (Boger, personal communication, April 1, 

2004). However, procedure and organizational improvements redefine the structure of the 

entire system. The new technology has to consider the organization, people, procedures, 

culture, and other key factors for proper integration (Nissen 2002). Many times 

organizations have tried to throw technology at a problem, without a change in 

procedure, only to find that the problem still exists. Thus, for an organization to be 

successful with new technology, procedures must change accordingly.  

This study focuses on building an accurate surface picture using UVs in a 

maritime setting through examination of information propagation. The results of this 

study define architecture for maritime use and an initial set of procedures for maritime 

fleet integration. Chapter II outlines a typical maritime mission structure and presents an 

adapted version of the knowledge-information-data (KID) model, including the 

relationship between KID and distributed sensors. Chapter II also discusses the layers 

comprising the information understanding flow path. Chapter III unravels the elements of 

system architecture and develops an initial model for analysis. 

 Discussion and interviews with operators and fleet staff assisted in revising the 

model. The results produce a set of high-level functions and the roles to support those 

functions along with associated diagrams. Chapter III also examines the relationship 

between high-level functions, the adapted KID model, and understanding layers. Chapter 

IV presents a discussion of measures of effectiveness and performance to determine the 

strength and validity of the architecture, along with improving the process through 

experimentation and observation. Chapter V concludes with applying the information 

exchange architecture, proposals for test and evaluation, insights, and future 

considerations for integration.  

 

 

 

 



6 

 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



7 

II.  UNDERSTANDING/INFORMATION FLOW  

A.  DECISION MAKING 
Making a decision is a human task. As long as decision makers are accountable 

for naval operations, automation cannot supplant the roles and responsibilities of 

personnel. There are decision support systems to provide the decision maker appropriate 

options, but it is ultimately a human choice. To make an informed decision, there is a 

need for timely and available data, information, and knowledge (Nissen 2002). 

However, advances in technology to assist decision-making, such as computer-

assisted data fusion, have not progressed as rapidly as information gathering technology. 

The commander’s ability to process and act on the increased volume of information 

depends on many factors including experience, stress level, cognitive processes, and 

other human factors (Nissen, personal communication, March 26, 2004). Human factors 

directly affect the decision at the organizational level. These include uncertainty 

management, mental simulation, situation awareness, attention management, problem 

detection, and option generation (Miller & Shattuck 2004). Therefore, with the 

introduction of a new system, in this era of technological advancement, it is critical that 

the proper command and control procedures evolve. 

B.  UV MARITIME SCENARIO 
This study uses the following scenario, which involves UVs in a tactical maritime 

setting:  

A deployed surface action group (SAG) is conducting maritime 
interdiction operations (MIO) within a focused area of responsibility 
(AOR). This area includes multiple contacts, most of which are neutral 
and some classified as critical contacts of interest (CCOI). The goal of the 
SAG is to process as many contacts as possible. This includes 
identification and maintaining understanding of the CCOI’s actions. 

The SAG identifies areas of interest, sea routes, and potential threat 
profiles and accumulates contact detection and locating data. Amplifying 
information, such as identity or intent, is available via a combination of 
shipboard and UV based visual, infrared (IR), signals intelligence 
(SIGINT), synthetic aperture radar (SAR), and acoustic or laser-based 
sensors. The SAG relays data collected from the sensors to the joint force 
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maritime component commander (JFMCC) staff, which processes the 
contact information to generate a recognized maritime picture (RMP) to 
support MIO.  

The scenario provides a basic maritime framework to analyze information flow. 

In observing the actions in the scenario, there are potential disconnects where information 

from the UV is transmitted to the SAG and JFMCC. The elements and actions taking 

place in between the UV and the JFMCC require definition. How does the data provided 

by the mission payload operator become informed data, or information, and how does 

this information support knowledgeable decision-making by the SAG and JFMCC? 

C.  UNDERSTANDING FLOW (NISSEN 2002) 
Many models are available for information flow and decision making problems. 

However, the problem is mapping an unmanned element to a generic model. From 

analysis, there is generation of a new set of information collection procedures and 

dissemination paths. A new roadmap ensures timely transmission is made to local (SAG) 

and high-level (JFMCC) commanders.  

The primary effort of this research is to develop a roadmap tracing the 

understanding flow (knowledge-information-data). The major understanding flow 

components are: the physical layer (network to which the unmanned vehicle is attached), 

the interface layer (which engages and transmits the incoming electrical signals provided 

by the distributed sensor), the cognitive layer (reception and interpretation of the signals), 

and the social layer (which facilitates action with the newly acquired information) 

(Nissen, personal communication, March 26, 2004, and Alberts & Hayes 2003). The 

following are Alberts and Hayes’ (2003) layers incorporating the UV maritime scenario. 

Physical-The physical layer consists of the UV, onboard sensors, and surface and 

airborne remote nodes. The physical layer encompasses the Open System Interconnection 

(OSI) 7-layer model for networks (Nissen, personal communication, March 26, 2004). 

Interface-The interface layer is composed of the human-machine interface where 

the mission payload operator receives the electrical signals. This is the first contact 

between the signals and the human who filters the signals as data or noise. This layer 
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includes all software the operator may use in receiving and transmitting data within the 

AOR (Alberts & Hayes 2003).  

Cognitive-The cognitive layer is composed of the mental activity that takes place 

for the filtered data to make its way towards decision makers. This is where the payload 

operator interprets the data based on a number of factors (experience, stress level/work 

load, human factors etc.), and transmits the refined data to SAG/JFMCC levels (Alberts 

& Hayes 2003). 

Social-The social layer incorporates the process of receiving and applying data 

based on understanding. This is the point where data becomes information. With the 

newly acquired information, the SAG/JFMCC use inherent operational skills and 

organizational learning techniques to formulate action plans (Alberts & Hayes 2003).   

D.  KNOWLEDGE FLOW HIERARCHY  
For each layer, there is corresponding data, information, or knowledge defining it. 

The information exchange architecture improves the quality of data throughout the 

system to provide knowledge for decision makers. The adapted knowledge-information-

data (KID) model with military conceptual mapping (Figure 2) supports this flow in an 

organization (Nissen 2002).  

Quantity

Quality

Data

Information

Tactical 
Knowledge

Operational 
Knowledge

 
Figure 2.   Adapted KID Model with Military Conceptual Mapping (After: Nissen 2002) 
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The broad base of the triangle represents the amount of data available to that level 

relative to other levels. Quantity, however, does not translate to quality. As an 

organization moves further up the y-axis, it comes closer to taking appropriate action 

(e.g. making action decisions) (Nissen 2002).  

Figure 2 addresses the importance of these factors with respect to quality and 

quantity. It represents the hierarchical nature of understanding flow: data is required to 

produce information, which in turn produces knowledge, and moves the organization in 

the direction of an action plan (Nissen 2002). This directly relates to UV sensor support 

in maritime missions, as depicted in Figure 3, which represents a tactical application of 

the adapted KID model. This figure shows a natural progression of the data required 

during naval missions, such as MIO.  
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Quality Quality

Quantity

Data

Information

Tactical 
Knowledge
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Information

Identification
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Priority Intelligence 
Requitemnets

 
Figure 3.   Adapted KID Model with Corresponding Maritime Information Model  

 

In order to move up a level in Figure 3, the level below must be complete and 

each successive level containing enough data below to sustain it. Operationally, with the 

acquisition of data from distributed sensors, the quality of information received by high-

level decision makers depends on the quality and quantity of the data collected locally by 

distributed UV sensors, which is processed by operators, analysts, and unit-level decision 

makers. 
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E.  DATA MANAGEMENT 
In a tactical scenario, analyzing the data flow from the UV requires definition of 

data and the context. Assuming the mission payload operator is aware of what to look for 

when monitoring the electrical signals sent by the UV, the operator establishes a 

hypothesis test. For example, by comparing the evidence for or against the presence or 

identity of a contact, each new data signal contributes to a judgment in the cognitive 

layer. For MIO, the mission payload operator would decide whether there are CCOI 

indications in the AOR. The operator either rejects or fails to reject this null hypothesis 

based on received data.  

Testing this process begins with each new contact. The larger the number of 

contacts recorded by the payload operator, the greater the amount of data accumulated 

and the more powerful the decision regarding each hypothesis test. The operator’s 

inherent knowledge of the situation, as well as the acquired data from the UVs, 

accumulates, correlates, and combines to form a single record for complete and timely 

assessment of the situation (Cristi 2003). Figure 4 depicts data flow from sensors to 

operators and decision makers, through respective layers and interfaces. 

 

Payload 
Operator

Interface

Database

Distributed  Sensor

Local Network

Decision Making Node

Signals

Data

Noise

Filtered
Data

Physical Interface Cognitive Social

Information

 
 

Figure 4.   Understanding Flow Path for Transmission of Signals to Decision Maker 
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F.  INFORMATION/KNOWLEDGE MANAGEMENT 
Decision makers process and manage accumulated data, where it becomes 

information. The social layer handles information in an operational environment with 

“experienced people who are engaged in goal directed behavior” (Miller & Shattuck 

2004). In the MIO scenario, this involves the JFMCC staff receiving signals of a potential 

COI in the AOR, and processing the contact and amplifying information to generate a 

RMP. Whether by an individual, such as the Tactical Action Officer (TAO), or a group of 

decision makers, such as the JFMCC staff, the social layer generates a complete analysis 

of the information based on the individuals viewing it.   

Once there is a complete understanding of the information, based on the 

cognizance of the decision makers, the information has reached the level of knowledge. It 

is at the knowledge level where action may take place depending on the context and 

mission. In the maritime scenario, the TAO or JFMCC staff can render a decision based 

on the information from the RMP and take action based upon the acquired knowledge.  
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III.  INFORMATION EXCHANGE ARCHITECTURE 

A.  MODELING INTRODUCTION 
Abstract views of the information exchange process assist in developing an 

architecture framework. Models in this thesis represent selected aspects of the structure, 

behavior, and operation associated with cooperative search and identification. In 

particular, the models demonstrate the activities occurring in the Chapter II UV maritime 

scenario. 

In the case of an information system, each activity receives data as input and 

produce information/knowledge as output. The activities are sequential and based on the 

initial conditions of the system. However, many activities occur concurrently and 

asynchronously, as is the case with tactical systems (Levis & Wagenhals 2000).  

B.  SYSTEM ARCHITECTURE 
The intent of the UV information exchange architecture is to build a method 

according to the requirements of the user. The current maritime architecture features 

manned platforms that send data by means of electrical signals, including voice reporting. 

A manned platform’s personnel analyze gathered information. For example, in a 

helicopter, the aircrew collaborates with the shipboard air controller to process data. 

However, with current tactical unmanned platforms, the information processing does not 

begin until the signals arrive at the ship. Therefore, there is a requirement to develop a 

new set of techniques, and procedures for this information exchange.  

Developing an architecture means conceptualizing the client’s needs and building 

a unique concept as a set of abstract views or models. In the MIO scenario, the 

requirement is to deliver timely and accurate information collected via unmanned 

distributed sensors to the JFMCC. The model should demonstrate information flow from 

remote sensor to decision maker, while the architecture specifies how to effect this 

process.  
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C.  INITIAL APPROACH TO INFORMATION EXCHANGE MODELING 
Initial attempts to capture the information exchange architecture included use of 

Integrated Computer Aided Manufacturing Definition Language 0 (IDEF0), a modeling 

language for developing structured graphical representations of the activities or functions 

of a specific system (FIPS 183). The IDEF0 model has two elements: a box, which 

represents an activity, and a directed arc that represents data or objects related to the 

activity. The sides of the boxes have standard meanings: arcs entering the left side 

represent inputs, arcs exiting the right represent outputs, top arcs represent controls, and 

bottom arcs are mechanisms. The activity boxes define the function using verbs. A 

functional decomposition includes a context or “parent” diagram with activities necessary 

for it to operate. A “child” diagram shows the same inputs and outputs as the parent, as 

these are required for both sets of diagrams to function (Levis & Wagenhals 2000).  

The first step in the development of the IDEF0 model is the context diagram. This 

diagram displays the operational concept modeled along with the inputs, outputs, 

controls, and mechanisms needed for the activity. In the case of the UV model, the 

operational concept is information exchange, shown in Figure 5.  

0
A0

Information 
Exchange

Remote Sensor Signals

Unit-level Intel

High-level Intel

Database 
Entry

Command 
Guidance

High-level Decision

SOPs

 
Figure 5.   IDEF0 Context or “Parent” Diagram 

 
The inputs for the model are the raw remote sensor electrical signals, provided by 

the UV, and unit-level/high-level intelligence reports. The controls are the standard 

operating procedures (SOPs) for UV use, and unit-level command guidance. One 
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mechanism through which information exchange occurs is GCCS-M database entry, 

which populates the RMP. The final product, or output, of the activity is a high-level 

decision.  

As the context diagram is decomposed, three main activities reveal what is 

necessary for information exchange to occur. The child diagram shows the activities 

comprising the operational concept in detail. These activities include operator analysis, 

information input, and making the operational decision. Each of the activities in Figure 6 

has inputs, controls, mechanisms, and outputs that relate to the parent diagram. For 

example, the operator performing the analysis receives data provided by the UV, as well 

as any unit-level intelligence reports. These inputs, along with commander’s guidance, 

allow the operator to spot visual cues more effectively while concentrating on CCOI. The 

mission payload operator then enters the data into the database. Upon receipt by the 

decision makers, relevant characteristics of interest pulled from the database enable 

appropriate decisions through collaboration and use of decision-making tools.  

 

1

Operator Analysis

2

Input Information

3

Make Decision

Remote 
Sensor 
Signals

Database 
Entry

SOPs

Command 
Guidance

High-level Decision

Operator
Report

RMP

Unit-level Intel High-level Intel

 
Figure 6.   IDEF0 “Child” Diagram 

 
D.  DISCUSSION OF INITIAL UV SYSTEM ARCHITECTURE 

The IDEF0 diagram provides some insight into the logical and behavioral 

portions of the system and discovery of possible problem areas in the proposed 
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architecture, but do not capture both the depiction of actual information exchange and 

hierarchical value enhancement. According to operator and fleet staff interviews 

conducted at a limited objective experiment (Camp Roberts, experiment, May 3-4, 2004), 

it is apparent that the IDEF0 diagram does not fully explain how the information travels 

through the system in order to facilitate understanding by decision makers. 

The three IDEF0 functions, analysis, input, and decision, require more in-depth 

examination. From the initial diagram, the roles for each function require definition. For 

instance, the payload operator report, or output of the operator analysis activity, is the 

first activity of interest. With the payload operator’s attention focused on the incoming 

UV signal, there are too many opportunities to lose vital data. In this case, there is risk of 

overlooking signals and providing distorted information (Frankenhaeuser 2001). UV 

mission payload operators may not be able to perform the sensor duties required and be 

able to input information for the next echelon of the architecture. A database manager 

(DBM) is able to record the activities of the payload operator and input these for 

database/RMP use. 

From warfare publication research and model discussion/interview, the IDEF0 

diagram decomposes into new functions composed of tasks. Investigation decomposed 

the three functions of operator analysis, information input, and decision making into nine 

high-level functions. These functions, numbered one through nine and shown in Figure 7, 

trace UV sensor data progression into information for high-level decision maker use.  

1. Preparing/
Searching/
Detecting

9. Decision 
Making

2. Collecting/
Displaying/
Localizing

3. Data Input

8. Intelligence
Evaluation

7. Disseminate/
Collaborate

6. Verification/
De-confliction

5. Tracking/
Updating

4. Classifying/
Identifying

 

Figure 7.   High-Level Functions Necessary for UV Information Exchange 
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The nine high-level functions address what is necessary to accomplish a maritime 

information exchange with UVs, in order to commit a contact to a RMP and process it for 

tracking, targeting, and interception. Each high-level function is composed of different 

tasks with inputs and outputs. These tasks form the procedural foundation for the 

information architecture.  

Some tasks begin and end before others and some require continuous updating 

and refreshing. Table 1 shows the perceived order of operations, along with the 

complexity required and whether or not the process includes any automation. The number 

of steps within a task, the amount of mental effort required, and where the task resides 

within the adapted KID model correlate to form a complexity factor. Automation is 

factored according to whether or not the process involves any computer assistance. For 

example, tactical units promulgate a situation report (SITREP) to commanders through a 

network interface, where collaboration among operators is a mental exercise. The tasks 

are in process order and use a letter coding system. The table also includes the associated 

high-level function and inputs/outputs for each task. 

 
Table 1. Functional Decomposition of Information Exchange 

 
Tasks Complexity Automation Inputs Fxn. 

# 
Outputs 

A. Conduct intelligence 
preparation of the 
battlespace 

MED YES intel reports, DB 
query 

1 search areas, 
potential COI 

B. Develop search 
areas/track 

MED NO intel reports, DB 
query 

1 surveillance 
pattern 

C. De-conflict 
airspace/water-space  

MED YES current air/sea asset 
info 

1 air/sea/UV de-
confliction 

D. Setup/Deploy UV LOW NO launch time, 
weather, SOPs 

1 launched UV 

E. Detect Contact Signature 
from UV sensor data 

HIGH YES UV signal 1 initial COI report 

F. Provide report to 
Information Watch 
Supervisor 

LOW NO known/unknown 
COI, UV signal 

2 report to IWS 

G. Query database for COI LOW YES DB query 2 known AOR 
COI 

H. Gather kinematics on 
contact 

HIGH YES course, speed, 
location 

4 increased 
awareness 

I. Create file in database LOW YES Data on COI 3 new DB file 
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J. Collaborate among 
operator and signature 
analyst 

MED NO acquired operator 
information 

7 understanding 
among operators 

K. Input contact 
attributes/characteristics 

LOW NO COI attributes 3 update DB  

L. Report unknown contact 
to high-level commander 

LOW NO COI info, SITREPs 7 commanders 
aware of COI 

M. Prepare SITREPs for 
chain of command 

LOW YES acquired intel on 
COI 

7 SITREP 

N. Promulgate SITREPs for 
chain of commander 

LOW YES SITREPs 7 decision maker 
awareness 

O. Direct payload MED YES COI info 5 fixed location for 
COI 

P. Provide cueing for 
CSG/ESG assets 

LOW NO high-level 
commander 
authorization 

6 directed assets 

Q. Gather data for 
satisfying EEI 

HIGH NO COI reports, 
kinematics 

8 satisfaction of 
EEI  

R. Fuse intel from UV w/ 
locally held contact info 

MED YES local unit intel 6 updated DB 

S. Fuse intel from UV w/ 
CSG/ESG asset info 

MED YES CSG/ESG intel 6 updated DB 

T. Correlate tactical intel 
with contact 

MED YES tactical intel 8 situation 
awareness 

U. Correlate operational 
intel with contact 

MED YES operational intel 8 awareness of 
mission  

V. Relay information to 
unit-level commanders 

LOW NO COI report 7 Unit-level 
understanding 

W. Relay information to 
high-level commanders 

LOW NO COI report 7 decision maker 
understanding 

X. Process contact identity HIGH NO operational intel, 
COI info 

6 COI identified  

Y. Classify contact HIGH NO DB entry, 
identification report 

4 COI classified  

Z. Verify contact HIGH NO DB entry, 
classification  

6 COI verified  

AA. Refine/Revise/Update 
information on contact 

LOW YES Refined 
classification and 
identification 

5 updated DB and 
situational 
awareness 

BB. Judge information 
confidence  

HIGH NO COI info, intel 
reports, SITREP 

9 decision maker 
knowledge 

CC. Make tactical or 
operational decision 

HIGH NO decision maker 
knowledge 

9 action decision 

DD. Dedicate unit-level 
assets, or 

LOW NO decision maker 
understanding 

9 assets deployed 

EE. Dedicate high-level 
assets 

LOW NO decision maker 
understanding 

9 assets deployed 

FF. Assess decisions LOW NO results of deployed 
assets 

9 situation 
assessment 
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Figure 8 displays an information task flow diagram using a PERT representation, 

showing task dependency information. Each square represents a specific letter-coded task 

outlined in Table 1. The arrows represent the paths data and information take within the 

exchange architecture. For example, R is an input for U, while H leads to K and Q. The 

blocks show the paths necessary in order to facilitate information flow.  
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Figure 8.   Information Task Flow Diagram 
 

The diagram shows paths data traverse for delivery to a decision maker. The data 

take multiple paths simultaneously, but each is required for proper exchange. Each path 

includes tasks that are manual and automated. Despite there being automation involved, 

many of these tasks precede and follow manual processes, which inherently slow the 

information exchange. The paths show that humans are a part of every aspect of the 

information exchange and errors and delays affect every process. Therefore, when 
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analyzing the flow, it should be noted where the paths can be improved by automating 

some of the manual tasks.  

E.  ARCHITECTURE SUPPORTING PERSONNEL 
From the Camp Roberts interviews (May 3-4, 2004), and a review of current UV 

practices, the revised high-level functions and defined tasks yield an initial set of 

personnel required for the information exchange architecture. The personnel defined 

herein are for generic maritime mission use and may change titles accordingly. In the 

Chapter I MIO scenario, the high-level commander is the JFMCC, but in other instances, 

the decision maker may be the Sea Combat Commander (SCC) or ship’s Commanding 

Officer. Members of the operational team will have responsibilities dedicated to them, as 

outlined in Table 2. In some cases, there are multiple roles performing the same task for 

collaboration and discussion. The personnel may change according to the mission of the 

unit and the circumstances of operation.  
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Table 2. Roles and Responsibilities for Information Exchange Personnel  
 

Role Responsibility 

Internal Pilot Vehicle operator. Guides and controls UV. 

External Pilot Conducts launch and recovery operations. 
Assists in UV Navigation. 

Mission Payload Operator Operates payloads aboard UV. Provides 
initial and follow-on signal assessment.  

Mission Commander Supervisor for all UV operations. Liaison 
between UV operations center and ship’s 
intelligence center. 

Intelligence Specialist   Assists payload operator in signal 
interpretation. Provides incoming data 
reports to DBM and Information Watch 
Supervisor. 

Database Manager Inputs data from UV sensors into 
manageable database files for RMP 
development. Notifies supervisors on 
update. 

Intelligence Watch Supervisor Supervisor of intelligence center watch 
operations. Coordinates UV data with 
acquired local and CSG/ESG asset data. 
Provides reports to commanders. 

Unit-level Intelligence Officer Responsible for unit level intelligence 
analysis and dissemination of information. 

Unit-level Decision Maker Overall ship operation and employment of 
shipboard systems. Responsible for 
delivery of information to RMP and 
deployment of unit-level assets. 

High-level Intelligence Officer Assists in interpreting information from 
RMP at operational level. Responsible for 
delivery of information to high-level 
commanders. 

High-level Decision Maker Ultimate decision authority. Interprets 
information from RMP and various 
sources. Responsible for action decisions to 
deploy low/high level assets. 

 

Figure 9 displays the personnel hierarchy for operations. The hierarchy shows a 

chain of command structure for maritime information exchange operations according to 

the responsibilities and personnel descriptions listed in Table 2.  
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High-level Decision Maker

Unit-level Decision Maker

Internal Pilot External Pilot Mission Payload 
OperatorDatabase Manager

High-level Intel 
Officer

Intel Watch 
Supervisor

Intel Specialist

Unit-Level Intel 
Officer

Mission 
Commander

 
Figure 9.   Personnel Hierarchy for Maritime Operation 

 
F. HIGH-LEVEL FUNCTIONS, UNDERSTANDING LAYERS, AND KID 

MODEL 
The technical, system, and operational views are necessary in defining 

relationships in information exchange and C4ISR system architecture (Levis & 

Wagenhals 2000). The high-level functions necessary to perform the UV information 

exchange directly correlate to the understanding layers (physical-interface-cognitive-

social) and the adapted KID model. Each of the functions performs a specific job within 

the layers of understanding to elevate data to the level of knowledge. As a piece of 

information makes its way through the architecture, it undergoes improvement at certain 

levels by satisfying the specific tasks within each of the functions. Figure 10 is a 

representation of these relationships.  
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Figure 10.   High-Level Functions Related to Understanding Layers and Adapted KID  

 

The C4ISR Architecture Framework, issued by the Department of Defense, 

specifies three views of information architecture. As described by Levis and Wagenhals 

(2000), the three views (technical-system-operational) represent a “particular 

characterization of the architecture using a set of products that are graphical, tabular, or 

textual”. The operational view is a description of the tasks, activities, and information 

flows required to accomplish or support a military operation. The nine high-level 

functions represent the operational view. The blocks symbolize organization through 

missions, or tasks, and the connectors show the function role in information flow (Levis 

& Wagenhals 2000).  

The system view is an account of supporting systems and interconnections for 

military operations. This view symbolizes the physical implementation of one or more 

operational elements and displays the interfaces in-between. The physical, interface, 

cognitive, and social layers of the architecture, represented in Figure 4 (page 11), identify 

the interfaces among the system nodes, including the unmanned platform, distributed 

sensors, communications network, control systems, data entry systems, decision support 

systems, and displays (Levis & Wagenhals 2000). 
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 A technical view is a set of rules leading the understanding of the elements 

whose purpose is to ensure that “a conformant system satisfies a specified set of 

requirements” (Levis & Wagenhals 2000). The requirement set forth by the architecture 

is a smooth transition of data to the level of decision maker knowledge. The KID model 

adapted from Nissen (2002), Figure 3 (page 10), represents the technical view (Levis & 

Wagenhals 2000).  

This study has taken the initial steps in developing these views. Figure 10 

represents the three views combined, showing the interrelationships among them. 

Analyzing the results of these views will serve as the basis for proper C4ISR system 

development.   
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IV. ANALYZING INFORMATION ARCHITECTURE 

A.   INTERPRETING OPERATOR OVERLOAD 
Measures of effectiveness (MOEs) and measures of performance (MOPs) 

determine how well the system conforms to operational objectives. They are quantifiable 

and measurable. MOEs focus on how a force “performs its mission or the degree to 

which it meets its objectives” (NATO 2002) and MOPs analyze the “internal system 

structure, characteristics and behavior” (NATO 2002). One critical MOP for information 

architecture, tied to operational objectives, is operator overload. In attempting to assess 

the architecture, potential for operator overload is examined for its link to errors and 

delays in an information exchange (Frankenhaeuser 2001).  

It is crucial to analyze the unmanned system for overload points in order to 

prevent mistakes previously made with manned systems. One interpretation of the USS 

Vincennes (CG-49) case, where a civilian airliner was mistaken for a hostile contact and 

shot down, involves worker overload. An inexperienced and unqualified console operator 

could not handle the numerous tasks given to him at that position. Subsequently, the 

console operator failed to verify identification and ensure a consistent track profile on a 

contact, resulting in information delivery error. In effect, there was a breakdown in the 

position serving as a filter for information flow to decision makers. Due to overloading, 

the console operator could not support critical information validation. This resulted in 

misleading and erroneous information in the system, allowing no time for independent 

verification by commanders. The mismanagement of information, along with other 

unforeseen events, resulted in the tactical failure (Dotterway 1992).  

Overloading an operator is a key factor to consider in this architecture. For 

personnel management metrics, measuring proper tasking requires calculating workload 

(Heacox 2004). An analysis of available tasks, listed in Table 1, results in distribution of 

tasks amongst personnel assigned to the mission (Table 2). 

Figure 11 (page 26) displays the division of labor assigned to personnel for both 

manual and automated tasks. The personnel are shown left to right according to 
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operational sequence. Figure 11 not only shows the proportion of automated tasks 

(shaded gray), but also shows the Payload Operator, Intelligence Specialist, Intelligence 

Watch Supervisor, and Unit-level Intelligence Officer performing a majority of the tasks. 

However, since some tasks are manual and others automated, the amount of relative 

workload among these personnel is unclear.   
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Figure 11.   Number of Tasks Distributed To Personnel 

 

A revised workload accounts for the number of tasks assigned to personnel, the 

complexity involved (from Table 1), and an adjustment factor for using automation. 

Figure 12 (page 27) shows the calculated values for workload using these three criteria. 

The values for each task were determined by multiplying the level of complexity (low=1, 

medium=2, high=3) by an automation factor. The automation factor is due to manual 

tasks requiring more time to complete and classifies the workload incurred by tasks 

performed manually. Figure 12 shows automation in conjunction with manual tasks. The 
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factor is 1 if the process includes automation. Manual tasks are displayed in factors of 3, 

2, and 1.25. These factors provide a range to depict whether automation significantly 

assists the process or if it only incrementally decreases workload. This more accurately 

reflects the overall distribution of tasking. From left to right, the roles are listed according 

to diminishing amount of workload.   
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Figure 12.   Revised Personnel Workload With Various Automation Factors 
 

Manual tasks require more time, potentially introducing delay and error into the 

system. From Figure 12, the Payload Operator, Intelligence Specialist, Intelligence Watch 

Supervisor, and Unit-level Intelligence Officer appear to be under heavy demand, 

performing over 60% of the workload depending on the contribution of automation. 

Overloading these operators is a concern because they are the initial source of data 

analysis. If these positions lose focus on their specific tasks, it results in possible neglect 

of vital data. Overloading could create interruptions in high-level functions four 
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(classifying/identifying) and five (tracking/updating), resulting in information exchange 

errors and delays. One simple way to overcome this is by adding additional assistance for 

handling extra tasks. Human factors analysis will identify the proportion of extra work 

performed by these personnel. Like overloading, additional metrics allow analysis of the 

information exchange architecture.  

B.   MOE-MOP FOR NEW TECHNOLOGY ASSESSMENT ON AN 
ORGANIZATION  
Recent studies in assessing how an organization operates with new technology 

have addressed MOE/MOP issues in information and personnel management. These 

metrics determine how well the proposed information exchange architecture 

accomplishes its intended purpose. Metrics must be quantifiable and measurable in order 

to determine accuracy, completeness, and timeliness of the tasks. Task consistency 

measures the level of shared understanding among personnel at any time during the 

process. For example, the task is consistent if the personnel (from Payload Operator to 

High-level Decision Maker) perceive the same characteristics and attributes on a COI. 

Accomplishing this requires polling and observation at each workstation (Heacox 2004). 

MOE/MOP for new technology assessment, on an organization’s information 

management, is required. They include:  

MOE: Availability of information technology and procedures for personnel.   
MOP:  
 1. Ability to monitor the status of the task environment. 
  (Situation-relevant information update rate (# tasks/min)) 
      2. Ability to establish and maintain needed collaborative links.  
  (Match info source and destination (% matched correctly)) 

MOE: Level of shared understanding among personnel. 

MOP:  
 1. Consistency of understanding the status of the task environment.  
  (Various time intervals, how often the status is understood  
  (% understanding over time)) 
 2. Accuracy of understanding the status of the task environment. 
  (Various time intervals, how close to true understanding 
  (% accuracy)) 
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Process output metrics include: 

MOE: The level of quality and effectiveness of resources to produce the output.  

MOP:  
 1. Value of the output. 
  (Extent output conforms to standards (% standards achieved)) 
 2. Time required to complete task.  
  (Time aspects of task, record times (seconds or minutes)) 
 3. Proportion of time spent at each task. 
  (Found from analysis of process time (% time per task)) 
 4. Personnel required to complete the process (Heacox 2004). 
  (In addition to personnel initially assigned (additional # required)) 
These metrics ensure timely and accurate information exchange among personnel 

in the architecture when adding new technology to an organization. Using the results 

from the MOEs and MOPs, a refinement of the information exchange process may occur. 

In particular, the consistency and accuracy of understanding among operators, and time 

delays in the task environment may undergo modification. 

C.  PROCESS IMPROVEMENT THROUGH EXPERIMENTATION 
When the information exchange architecture undergoes experimentation, the 

results will show: 

1. How long individual tasks take to complete. 

2. How long it takes to report and enter data. 

3. The variability and distribution of the time required for the entire process. 

 Improving information exchange comes from insights available from 

experiments. Experimentation can discover failure modes, critical paths, and 

workarounds not foreseen in design. These results should lead to robustness and stability. 

For instance, overcoming errors caused by overloaded operators requires controlling and 

updating SOPs and adding assisting personnel as the mission and situation warrant. 

Determining if the process is robust requires finding the critical parts of the process 

causing most errors. Minimizing these errors provides consistency in the information 

exchange process.  
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V.  CONCLUSIONS 

A.  APPLYING THE INFORMATION EXCHANGE ARCHITECTURE 
The ability to get information to high-level commanders is only as good as the 

ability to situate and manage data provided by sensors. A simultaneous adjustment in 

procedure must occur in order to facilitate a useful transition in introducing technology. 

This is the case with the UV platform. The difficulty in arriving at a solution is 

recognizing that UV technology is developing quicker than the basic command and 

control foundation. There must be a development of architecture in order to align the task 

organization, tactical procedures, and emerging technology to ensure proper 

incorporation of UV platforms into maritime missions.  

The capability of remote sensors linking real-time and near real-time data 

throughout the chain of command provides rapid situational awareness and a level of 

detailed information. This greatly aids both the reporting and decision-making processes 

outlined in the information architecture. This information can be adapted to directly 

support planning and execution of maritime missions. A continual refreshment process 

will enable commanders and staffs to visualize the full spectrum of adversary capabilities 

and potential courses of action across all dimensions of the battlespace (MIO NTTP).  

The purpose of this study was to develop an architecture to properly track and 

employ remote sensor data from a payload operator to a decision maker. After 

establishing proper information propagation, a definition of data, information, 

knowledge, and understanding of the physical, interface, cognitive, social layers of the 

system, a basic architecture diagram (IDEF0) emerged. This diagram showed weaknesses 

in displaying, to actual operators and fleet staffs, what was happening to the information 

as it made its way through the system. It provided limited insight into sources of error 

and delay in UV information exchange. 

Through research, discussion, and fleet input, the basic flow diagram developed 

into nine high-level functions that are necessary to facilitate information flow. Functional 

decomposition of the roles and responsibilities made analysis possible. A comparison of 



32 

the high-level functions to the adapted KID model and understanding layers showed 

parallels to where data becomes information, and where the information becomes 

knowledge for decision actions. 

B.  INSIGHTS AND FUTURE CONSIDERATIONS  
The important insight to remember for information flow is the requirement set by 

the user. If the user demands flexibility for maritime mission use, then the architecture 

should incorporate flexibility within its design. In this study, the design is fully adaptable 

to any maritime mission incorporating UVs. If the situation warrants, the system allows 

for additional personnel to aid in satisfying tasks. It may be necessary to add personnel to 

the roles and responsibilities list in order to overcome obstacles such as operator 

overload. However, the division of responsibility depends on the mission and the number 

of personnel available to fill the roles. The important aspect for this architecture, and the 

adjustments, is to remain balanced.  

This study only addressed single sensor UV interpretation. Single sensors were 

necessary in developing the architecture; however, multiple sensors are aboard unmanned 

platforms. Likewise, a number of UV platforms may deploy concurrently. When multiple 

sensors are delivering information, correlation issues should materialize, increasing the 

complexity of the entire process. Analysis of the architecture must reflect this. 

Experimentation will provide for complete PERT analysis of the task flow 

diagram through discovery of task duration and distribution. Using these numbers, the 

PERT chart may undergo analysis for critical paths. Improving the process includes the 

discovery of these critical paths and designing for them in the architecture. Minimizing 

critical path time, through developing technologies, decreases the time the process takes 

to complete. For example, integrating systems that automate tasks will resolve this issue. 

Automating some of the tasks in the architecture may minimize errors and delays 

in reporting information to decision makers. However, automating the processes does not 

free the system from error, as was the case with USS Vincennes. Human error and delay 

affect every process in information exchange. The key to automation comes from 

studying the information exchange architecture, noting where the errors and delays are, 
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and developing technologies to minimize them. Experimentation provides an opportunity 

to identify processes that may require automating. 

To further the research, simulation and experimentation will show adaptability 

and flexibility within the architecture by using MOE/MOP appropriate to assessing 

advanced technology’s impact on an organization. Gathering these metrics requires 

interview and observation, of a maritime information exchange experiment, where the 

personnel roles are manned and well defined.  
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